MATH 124B: HOMEWORK 1

Suggested due date: August 8th, 2016

(1) For $m, n \in \mathbb{Z}$, compute the following integrals
(a) $\int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x$.
(b) $\int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x$.
(2) Let $\phi(x)=x^{2}$ for $0 \leq x \leq 1$. Calculate its Fourier sine and cosine series.
(3) Find the Fourier cosine series of the function $|\sin x|$ in the interval $(-\pi, \pi)$. Use it to find the sums

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}, \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}
$$

(4) Solve the Neumann initial value problem

$$
\begin{cases}u_{t t}=c^{2} u_{x x}, & \text { on } 0<x<\pi \\ u_{x}(0, t)=0=u_{x}(\pi, t) \\ u(x, 0)=0 \\ u_{t}(x, 0)=\cos ^{2}(x) & \end{cases}
$$

(5) Show that $\cos (x)+\cos (a x)$ is periodic if a is a rational number. What is its period?
(6) How does differentiation and integration affect the even-odd property of a function? For integration, assume the constant of integration is 0 .
(7) Let $\phi(x)$ be a function of period π. If $\phi(x)=\sum_{n=1} a_{n} \sin (n x)$ for all x, find the odd coefficients.

Solutions

(1) Directly compute using the identities

$$
\begin{aligned}
& 2 \sin (A) \cos (B)=\sin (A+B)+\sin (A-B) \\
& 2 \cos (A) \cos (B)=\cos (A+B)+\cos (A-B)
\end{aligned}
$$

(2) Directly applying the formulas, we have for $n \neq 0$

$$
\begin{aligned}
A_{n} & =2 \int_{0}^{1} x^{2} \cos (n \pi x) d x \\
& =\frac{(-1)^{n} 4}{n^{2} \pi^{2}}
\end{aligned}
$$

and

$$
A_{0}=2 \int_{0}^{1} x^{2} d x=\frac{2}{3}
$$

Similar computation for the sine series.
(3) Using the cosine coefficient formula for the symmetric interval, we have

$$
\begin{aligned}
A_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|\sin x| \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \cos (n x) d x \\
& = \begin{cases}-\frac{4}{\pi\left(n^{2}-1\right)} & n \text { even } \\
0 & n \text { odd }\end{cases}
\end{aligned}
$$

Hence

$$
|\sin (x)|=\frac{2}{\pi}+\sum_{n=1}^{\infty}-\frac{4}{\pi\left(4 n^{2}-1\right)} \cos (2 n x)
$$

Let $x=0$, then

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}=\frac{1}{2}
$$

and when $x=\frac{\pi}{2}$,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}=\frac{1}{2}-\frac{\pi}{4}
$$

(4) The general formula is given, to compute the cosine series for $\cos ^{2}(x)$, one simply uses the identity $\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$.
(5) Let $\alpha=\frac{p}{q}, \operatorname{gcd}(p, q)=1$. The period is given by $2 \pi q$.
(6) Let $f(x)$ be even. Its derivative is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

So

$$
\begin{aligned}
f^{\prime}(-x) & =\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h} \\
& =\lim _{h \rightarrow 0}-\frac{f(x-h)-f(x)}{-h}=-f^{\prime}(x) .
\end{aligned}
$$

So the derivative is an odd function. The other case is similar. For antiderivatives, we have (assuming the constant of integration is 0 ,

$$
F(x)=\int_{a}^{x} f(s) d s
$$

Then changing variables $s=-t$

$$
\begin{aligned}
F(-x) & =F(a)+\int_{a}^{-x} f(s) d s \\
& =F(a)+-\int_{-a}^{x} f(-t) d t \\
& =-F(x)
\end{aligned}
$$

So the antiderivative is odd. The other case is similar.
(7) Use $\sin (n(x+\pi))=(-1)^{n} \sin (n x)$ and periodicity to obtain $a_{n}=0$ for n odd.

